
REACTTM In IRIXTM 5.3

Technical Report

Silicon Graphics, Inc.

A description of the real-time capabilities of IRIX

Version 5.3 running on OnyxTM and

CHALLENGETM multiprocessor systems.

REACT In IRIX V5.3 Technical Report 3

Table Of Contents

Introduction...9

Scope Of This Document ...9

Configuration Assumptions...9

Related Documentation ...9

System Interrupt Response ..10

Total Interrupt Response Time...10

Hardware Interrupt Latency ... 11

Software Interrupt Latency ...12

Potential Sources Of Software Interrupt Latency ...12

Software Interrupt Response Time ..13

Configuring For Real-Time Operation ...14

Redirecting Interrupts ...14

Assigning Processes To Processors ...15

Locking Processes Into Memory...15

Processor Isolation ...16

Overview ..16

Activities That Override Processor Isolation ...16

Minimizing Memory Management Overhead..17

Controlling Process Scheduling ..17

Setting Process Priority ..17

Disabling The UNIX Scheduler (Shutting Off Clock Interrupts)18

Deadline Scheduling..19

Other Real-Time Programming Features...22

Timers..22

Interval Timers..22

Event Timers ...22

Details Of Timer Resolution...23

Asynchronous Disk I/O..24

External Interrupts ..26

Signals ...27

VME Bus Capabilities and Use..30

Configurations ..30

Memory Mapping ..31

PIO Mapping...31

DMA Mapping ..31

Optimizing Bandwidth and Latency ..32

PIO Operations ...32

DMA Engine ..33

Intelligent I/O Controllers..34

SCSI Capabilities and Use ...35

Summary of REACT System Functions ...36

6 REACT In IRIX V.5 Technical Report

List Of Figures

Components of Total Interrupt Response ...10

Hardware Interrupt Path ..11

Components of Software Interrupt Response Time ..13

Asynchronous I/O operation ...20

Asynchronous I/O operation ...25

REACT In IRIX V.5 Technical Report 7

List Of Tables

TABLE 1. Signal Functions Summary ... 28

TABLE 2. CHALLENGE / Onyx VME Slots .. 30

TABLE 3. POWERchannel-2 (Pc-2) Configurations vs. Number of VME Busses 31

TABLE 4. VME Bus DMA Performance (using DMA board on VME) 33

TABLE 5. VME PIO Bandwidth (CPU accessing Slave on VME Bus) .. 33

TABLE 6. VME DMA Engine Performance vs. Block Size (MB / sec, D32 transfers) 34

TABLE 7. REACT System Functions .. 36

8 REACT In IRIX V.5 Technical Report

Introduction

REACT In IRIX V.5 Technical Report 9

1.0 Introduction

The REACT extensions to IRIX enable a multiprocessor system to be configured to pro-

vide deterministic performance, including the response to external interrupts and sig-

nals. REACT also provides features that simplify the implementation of real-time

applications.

The approach used in IRIX with REACT to achieving determinism is to provide the

user with full control over the assignment of software activity to processors. One pro-

cessor (or more, if desired) is designated as the system processor, and all non-determin-

istic system activity takes place on that processor. For example, system activity

typically includes the UNIXTM scheduler and general-purpose disk and network I/O.

The remaining processors are designated as real-time processors, and no system activity

takes place on those processors unless it is explicitly requested by a real-time process.

1.1 Scope Of This Document

This document covers the subset of IRIX operating system functionality and of Onyx

and CHALLENGE multiprocessor hardware that is of particular interest to developers

of real-time applications. It provides a description of system functionality, identifies the

system calls and user interfaces that provide access to the functionality, and provides

background information.

1.2 Configuration Assumptions

The descriptions included in this document are accurate for all Onyx systems and all

multiprocessor CHALLENGE systems running IRIX 5.3. Within this document, these

configurations are referred to generically as “the system”.

1.3 Related Documentation

Refer also to the following documents:

Advanced Site and Server Administration Guide (M4-ADMIN-3.0, or available on-line

through IRIS InsightTM)

CHALLENGE and Onyx Performance Report

IRIX Device Driver Programming Guide (007-0911-030)

IRIX Device Driver Reference Pages (007-2183-001)

IRIX Man Pages (M4-IRXMP-4.0, or available on-line through IRIS Insight)

IRIX System Programming Guide (available on-line through IRIS Insight)

Symmetric Multiprocessing Systems Technical Report (EVER-IND-TR (01/93))

System Interrupt Response

10 REACT In IRIX V.5 Technical Report

2.0 System Interrupt Response

This section describes the events that occur in response to an external interrupt.

2.1 Total Interrupt Response Time

The REACT extensions included in IRIX provide guaranteed deterministic interrupt

response on a properly configured system. Performance is specified in terms of total

interrupt response, which is defined as the interval between the occurrence of an exter-

nal interrupt and the start of execution of a user process that was enabled by that inter-

rupt. The worst-case total interrupt response time for a properly configured system

running IRIX V.5 is guaranteed not to exceed 200 µs.

Total Interrupt Response time can be divided into two component intervals (refer to Fig-

ure 1):

1. Interrupt latency. The time between the occurrence of a hardware interrupt and the

instant when the operating system begins responding to that interrupt.

2. Software interrupt response time. The system time spent responding to the inter-

rupt, ending when a user process begins executing.

Figure 1: Components of Total Interrupt Response

VME

Interrupt

Occurs

OS

Response

Complete

Figure 1: Components of Total Interrupt Response

t

Processor

Receives

Interrupt

OS

Begins

Responding

Hardware

Latency

Software

Latency

Interrupt Latency Software Interrupt Response Time

TotaI Interrupt Response Time

System Interrupt Response

REACT In IRIX V.5 Technical Report 11

Interrupt latency, as defined in the previous section, can be subdivided into two compo-

nent intervals:

1. Hardware interrupt latency. The time required for the interrupt to propagate

through the hardware from its source to the R4400TM interrupt pin.

2. Software interrupt latency. The interval between the instant when the R4400

receives the interrupt, and the instant when the operating system begins responding

to the hardware interrupt.

2.1.1 Hardware Interrupt Latency

The system implements 128 interrupt levels with priority control hardware on the CPU

boards. In addition to being divided by levels, interrupts may be directed to specific pro-

cessors or to groups of processors.

The path followed by VME interrupt signals is shown in Figure 2.

Figure 2: Hardware Interrupt Path

On the VCAM VME controller, there are eight Interrupt Level / Destination registers

which can be programmed with arbitrary interrupt levels and destination processors.

(Direct access to these registers is limited to the OS; see section 3.1.) Seven of these

registers are directly associated with the seven VME interrupt lines; the eighth is associ-

ated with error detection circuitry within the VCAM. When one of the interrupt lines is

active or an error is detected by the VCAM, the interrupt level and destination contained

in the associated register is used to transmit an interrupt over the POWERpath-2TM bus,

where it is received and acted on by the appropriate CPU.

The typical time required for the interrupt to propagate from the VME bus to the appro-

priate CPU chip is approximately 2µs. The theoretical worst-case propagation delay is 8

µs. Note that the theoretical worst case requires a very large configuration. For typical

configurations, 4µs is a more appropriate worst-case maximum propagation delay.

IRQ 7

IRQ 1

Figure 2: Hardware Interrupt Path

•
•
•

VCAM

VME

Controller

POWERchannel-2

Board

CPU

Board

0

POWERpath-2

Bus

•
•
•

CPU

Board

n

System Interrupt Response

12 REACT In IRIX V.5 Technical Report

Worst case interrupt propagation time can be reduced significantly by not supporting

graphics or HIPPI interfaces with the same POWERchannel-2 interface used for VME.

Upon receiving a VME interrupt at a CPU, the OS’s VME Kernel Driver will read status

registers to identify the interrupting device(s) and clear the interrupt. This information is

used to select which device-specific interrupt handler will execute. Interrupts are not

cleared until all devices requesting service at that level have been read.

In order to minimize the time spent handling interrupts on the VME bus, it is preferable

to connect only a single device to each VME interrupt line.

2.1.2 Software Interrupt Latency

Software interrupt latency is the interval between the instant when the hardware inter-

rupt signal arrives at the R4400, and the instant when the OS begins responding to the

interrupt.

Anytime interrupts are not masked in software, then software interrupt latency is less

than one instruction time. The approach taken in IRIX with REACT is to enable real-

time processors to always have interrupts enabled when a real-time interrupt can occur,

so that software latency is less than one instruction time. The implications of this are

covered in the following sections, which describe the situations in which interrupts are

masked.

2.1.3 Potential Sources Of Software Interrupt Latency

The two situations in which interrupts are masked are:

1. When a higher priority interrupt handler is executing.

2. When critical regions of kernel code are executing.

IRIX with REACT enable users to prevent higher priority interrupts from introducing

latency by directing them away from real-time processors. Critical regions of kernel

code are avoided or carefully managed. The following sections examine these two situ-

ations in detail.

2.1.3.1 Interrupt Handlers

While an interrupt handler is executing, it masks interrupts at an equal or lower priority

from being serviced. Furthermore, all pending interrupts that are equal to or higher than

the priority of a new interrupt must complete execution before the new interrupt is ser-

viced. Interrupt handlers run only on the processor to which the interrupt is directed.

Once non-real-time interrupts are directed away from real-time processors as described

in Section 3, they will never introduce latency.

2.1.3.2 Critical Kernel Regions

IRIX is a fully symmetric multiprocessor OS that allows multiple processors to execute

in the kernel simultaneously. Certain critical sections of kernel code require exclusive

access to shared resources. Spin locks are used to arbitrate which processor has exclu-

sive access to the shared resources. Once a processor acquires a spin lock and enters a

critical section of kernel code, it raises its interrupt level. New interrupts that are below

the processor’s interrupt level will not be serviced until the critical section of kernel

code is complete and the processor’s interrupt level is lowered.

System Interrupt Response

REACT In IRIX V.5 Technical Report 13

Where possible, real-time processes should avoid making system calls during time-crit-

ical regions. Instead, forking processes, allocating memory, etc. should be done as part

of an initialization routine. Typically, the only types of kernel activity that must be done

during a time-critical region are process synchronization and context switches.

2.2 Software Interrupt Response Time

The software interrupt response time is the interval between the time the OS begins

responding to an interrupt and the time that a user level process begins executing. Fig-

ure 3 shows the sequence of operations that are included in the software interrupt

response time. These are described below:

• Mode switch. A mode switch occurs whenever a processor enters or leaves the ker-

nel. It involves saving / restoring basic resources such as the integer registers and

graphics registers (if any). When entering the kernel, it also includes steps to deter-

mine why the kernel was entered.

• Interrupt handler. This is device-specific code that always runs in kernel mode on

the processor to which an interrupt is directed. Users must provide an interrupt han-

dler for any device they add to the system that generates interrupts. Typically, an

interrupt handler will unblock a process or send a signal to alert a process that the

interrupt has occurred.

• Dispatch cycle. During the dispatch cycle, the scheduler determines which user pro-

cess should run next. A dispatch cycle will be followed either by a context switch

and a mode switch, or by only a mode switch, depending on the circumstances. If the

next user process to be run is not the same user process that was previously running,

the scheduler initiates a context switch.

If the processor was in the kernel idle loop at the time the interrupt occurred, a con-

text switch will not be required if the next process to be run was also running just

before the processor entered the idle loop.

• Context switch. During a context switch, the kernel saves the context of one user

process and restores the context of another user process.

Figure 3: Components of Software Interrupt Response Time

OS Begins

Responding

To Interrupt

Mode

Switch

Kernel-Level

Interrupt Handler

(unblocks process

or sends signal)

OS

Response

Complete

Dispatch Context Switch

(may not be

required)

Mode

Switch

Figure 3: Components of Software Interrupt Response Time

t

Configuring For Real-Time Operation

14 REACT In IRIX V.5 Technical Report

3.0 Configuring For Real-Time Operation

The steps required to establish a set of real-time processors with deterministic response

to interrupts are outlined below. A detailed description of each step is provided in the

sections that follow.

1. Direct interrupts not related to real-time processes away from real-time processors.

Direct real-time interrupts to the real-time processors.

2. Restrict each real-time processor so that all processes not explicitly assigned to it

will be run on a non-real-time processor.

3. Lock real-time processes onto real-time processors.

4. Allocate and lock physical memory to all virtual addresses used by real-time pro-

cesses.

5. Isolate the real-time processors from interprocessor interrupts used in a multiproces-

sor system.

6. Exempt real-time processors from system clock interrupts and UNIX timesharing

scheduler activity.

Once these steps are complete, the total response time to an interrupt directed to a real-

time processor will be less than 200 µs, from the time the hardware interrupt occurs

until a user process begins executing.

This timing assumes that the interrupt is initiated by a VME device, and that no other

VME interrupts of the same level are outstanding at the time the interrupt occurs. An

interrupt handler specific to that interrupt will unblock a user process that is sleeping

awaiting the interrupt. The guaranteed timing assumes that another user process is exe-

cuting at the time the interrupt occurs, so a context switch is necessary.

An additional step is required to ensure that the processes assigned to real-time proces-

sors execute in the desired order. The user must assign a priority in the real-time band to

each process. All real-time priorities (i.e. priorities in the real-time band) are non-

degrading.

When the REACT/pro frame scheduler is used to schedule processes, step 2 - 6 listed

above are invoked automatically. In this case, the only other explicit user action

required to configure for real-time operation is to direct interrupts properly.

3.1 Redirecting Interrupts

Mapping of hardware interrupts to processors is controlled by system software. The

user has full control over the assignment of VME interrupts to processors. The user can-

not specifically control the direction of other types of interrupts to processors, but he

can prevent the system from assigning any of these interrupts to real-time processors.

Controlling the mapping of interrupts to processors is done by editing the file /var/sys-

gen/system, then running autoconfig(1M) or lboot(1M). Non-real-time interrupts should

be directed away from the real-time processors (using NOINTR directive), and real-

time interrupts should be directed to real-time processor (using IPL directive). VME

interrupts are controllable by VME interrupt level (IRQn). That is, all interrupts at a par-

Configuring For Real-Time Operation

REACT In IRIX V.5 Technical Report 15

ticular IRQ level on the VME bus will be directed to the same processor. In systems

with multiple VME buses, the mapping of IRQ levels to processors cannot be specified

by bus. This means, for example, that IRQ7 for all VME buses will be directed to the

same processor.

3.2 Assigning Processes To Processors

The POWERpath-2 hardware architecture is fully symmetric, meaning that there are no

software activities which can only run on a specific processor. If desired, processes can

be allowed to migrate freely among processors. In its default (non-real-time) state, IRIX

optimizes utilization by assigning the highest priority ready-to-run process to the first

available processor (subject to some modification due to cache affinity). Other schedul-

ing modes are available, however, enabling the user to explicitly control assignment of

processes to processors.

In a real-time environment, the user should designate one or more processors for run-

ning real-time processes, lock real-time processes onto these processors, and restrict

these processors from running any other processes. This can be done using shell com-

mands, or more typically, using system calls.

The sysmp(2) command MP_MUSTRUN specifies that a process must run on a specific

processor. Its shell command equivalent is mpadmin(1). The locked process will always

run on the specified processor, even when kernel code is executing on behalf of the pro-

cess. An exception to this can occur with drivers which are not semaphored. If the pro-

cess calls a non-semaphored driver that includes an interrupt handler for an interrupt

directed to another processor, however, the interrupt handler will execute on the other

processor. This temporary override of MP_MUSTRUN is transparent to the user.

Threads created using sproc(2) will inherit their parent’s processor assignment. In the

case where threads are created prior to calling sysmp(2), each thread must be assigned to

a processor individually.

The sysmp(2) command MP_RESTRICT restricts a processor to running only processes

assigned to it using sysmp(2) MP_MUSTRUN, or its shell command equivalent,

runon(1). An exception to this restriction are interrupt handlers of interrupts directed to

that processor. To avoid having an interrupt handler run on a processor, the interrupt

should be directed to a different processor using NOINTR. MP_RESTRICT requires

superuser privileges.

3.3 Locking Processes Into Memory

In a virtual memory system, any memory reference can potentially cause a page fault.

The time required to bring the data being referenced from disk into physical memory

will destroy real-time behavior. IRIX with REACT enables users to lock processes into

memory, ensuring that real-time processes will never incur a page fault.

IRIX with REACT provides the ability to lock / unlock a specified range of addresses

into physical memory using mpin(2) and munpin(2). When called, mpin(2) causes the

kernel to allocate physical memory to the specified address range and locks those pages

down before returning to the user program. The call munpin(2) undoes any previous

Configuring For Real-Time Operation

16 REACT In IRIX V.5 Technical Report

locking using mpin(2). Shared memory segments (see shmop(2)), shared arenas (see

usinit(3P)), and mmap(2) files must still be individually locked using mpin(2).

UNIX SVR3 provided this capability in a rudimentary fashion, using plock(2), which

allows text, data, or stack segments to be locked in their entirety. IRIX also supports

plock(2), and has extended its functioning to automatically lock shared library sections.

In addition, when plock(2) is used, any growth of a locked section (via sbrk(2)) will

cause the pages to be immediately faulted in and locked down.

3.4 Processor Isolation

3.4.1 Overview

The processor isolation feature of IRIX with REACT enables the user to prevent the

kernel from sending inter-processor interrupts a real-time processor.

In order to maintain the integrity of the shared memory, symmetric multiprocessing pro-

gramming environment, IRIX must carry on two system activities that are not visible to

user processes. These are instruction cache flushes, and Translation Look-Aside Buffer

(TLB) flushes. Nominally, at irregular intervals IRIX will generate inter-processor inter-

rupts to all processors to signal them to flush their TLB or instruction cache. For iso-

lated processors, IRIX will instead set a status bit to indicate that a flush is pending.

When an isolated processor enters kernel mode, the status bits are tested and any pend-

ing flushes are carried out. (A processor enters kernel mode whenever the running pro-

cess makes a system call, or when an external interrupt occurs that is directed to that

processor.) This ensures that the user’s real-time process will never be preempted by an

unsolicited interrupt from the kernel, and eliminates the overhead of fielding an inter-

processor interrupt.

Processor isolation is established using either the sysmp(2) command MP_ISOLATE, or

the mpadmin(1) shell command.

3.4.2 Activities That Override Processor Isolation

All IRIX kernel services are available to a process running on an isolated processor, but

certain system calls will generate inter-processor interrupts that are not blocked by pro-

cessor isolation. Fielding such an interrupt introduces latency which can cause non-

deterministic behavior in processes running on the processor.

The following system calls will generate interrupts if they are executed by a process

running on an isolated processor, or by an sproc of such a process running on any pro-

cessor. These system calls can be used in a real-time application without introducing

non-determinism provided they are executed in an initialization routine.

• cachectl(2) system call to mark pages cacheable or uncacheable

• fork(2) system call to create a new process

• sproc(2) system call to create a new share group process

• sbrk(2) system call that releases memory or grows memory past a 4 MB boundary

• mprotect(2) system call to set protection on a portion of memory that is shared

(MAP_LOCAL is immune)

• prctl(2) system call to acquire information on the current process

Configuring For Real-Time Operation

REACT In IRIX V.5 Technical Report 17

The following system calls will generate inter-processor interrupts to an isolated proces-

sor if they are called from any processor and passed the pid of a process running on the

isolated processor.

• prctl(2) system call to acquire information on a process running on an isolated pro-

cessor

• a write using proc(4) to the address space of a process running on an isolated proces-

sor

3.4.3 Minimizing Memory Management Overhead

A processor on which no process frees any memory page will never be required to flush

its TLB, even without processor isolation. Accordingly, real-time processes and device

drivers should be written so that memory resources are allocated once and reused, rather

than repeatedly allocated and freed.

3.5 Controlling Process Scheduling

UNIX typically implements priority aging for processes. The priority of a process that is

CPU-bound is lowered gradually as the process runs. This ensures that lower priority

processes can eventually run, and is desirable behavior in the environments for which

UNIX originally was designed; i.e. interactive users typing on ASCII terminals. In a

real-time environment, the user typically wishes to ensure that a process will run imme-

diately when an event occurs (e.g. delivery of a timer signal). Specifying a high priority

with the UNIX nice(2) system call is only a partial solution; even “niced” jobs age.

IRIX with REACT provides fixed-priority scheduler services which meet the require-

ments of a real-time environment.

3.5.1 Setting Process Priority

Under IRIX with REACT, the user can specify a fixed priority for a process that does

not decrease over time. Fixed priorities are available in three bands: above normal

UNIX priorities (real-time band), within the same range as normal UNIX priorities, and

below normal UNIX priorities. These bands are appropriate for real-time processes,

general purpose processes, and large background processes, respectively. Any process

in the highest priority (real-time) band will always take precedence over any process in

either of the other two bands. No process in the lowest priority band will ever run if

there are any processes ready to run in either of the two higher priority bands.

Within the real-time priority band, there are 10 priority levels (30 - 39). If two or more

processes are ready-to-run at the time of a scheduling event, the highest priority process

(lowest priority level) will always run. If a high priority process becomes ready to run

while a lower priority process is running, the lower priority process will be preempted

immediately.

Fixed priorities in the real-time band can be dangerous if misused. If a process with the

highest fixed priority enters an infinite loop, then all other processes will be unable to

run on that processor. On a uniprocessor, a system reset is the only way to regain con-

trol. On a multiprocessor system, it is possible to kill the offending process from a shell

executing on another processor.

Configuring For Real-Time Operation

18 REACT In IRIX V.5 Technical Report

Fixed process priorities are established using the schedctl(2) system call. The real-time

priorities range between 30 and 39, inclusive. The calling process must have superuser

privileges to set a fixed priority above normal UNIX priorities.

If a real-time process is waiting for a lock that is held by a lower priority process, the

priority of the process that holds the lock will be temporarily raised to that of the real-

time process. This avoids a form of priority inversion that would otherwise occur if the

low priority process had to wait for a resource held by a process whose priority was

above its own, but below that of the real-time process.

3.5.2 Disabling The UNIX Scheduler (Shutting Off Clock Interrupts)

When configured as a timesharing system, the UNIX scheduler daemon wakes up on

each processor at the beginning of each time slice and determines which process will

run on that processor during that time slice. The scheduler updates the accounting statis-

tics for the running process, decrements its time slice, and performs some other time-

sharing accounting.

The UNIX scheduler daemon is awakened by a system clock interrupt sourced by a

hardware timer. Each processor has its own hardware timer. The system clock timers are

clocked by the processor’s clock signal, and generate an interrupt every 10 ms. The

default time slice is 30 ms, which means that the scheduler is run every third clock inter-

rupt. The time slice is a tunable parameter.

In a real-time environment, this periodic system activity may be unnecessary, and repre-

sent undesirable overhead. IRIX with REACT enables the user to shut off periodic

scheduler activity on an isolated processor using sysmp(2). (See the previous section for

a description of processor isolation.) The clock must remain enabled on at least one pro-

cessor in a multiprocessor system. By default, the clock on processor 0 must remain

enabled. This can be modified using the MP_FASTCLOCK command in the sysmp(2)

system call.

Shutting off the clock on a processor suspends the action of the scheduler daemon.

Under these circumstances, a running user process will continue to run without interrup-

tion until it chooses to yield. The process accounting information usually collected by

the scheduler will be lost while the clock inteprocessor interrupt is shut off.

Scheduler services remain available on an as-needed basis on a processor that does not

receive clock interrupts. That is, if a process blocks or sleeps waiting for completion of

an I/O system call, the scheduler will be invoked to run the next-highest priority process

that is assigned to that processor (if any).

If the clock interrupt is not shut off on a real-time processor, that processor will incur a

clock interrupt once per time slice. The clock interrupt handler typically requires 200µs

to execute, and user interrupts to the processor are disabled during this time.

Unless the REACT/pro frame scheduler is being used (see next section), processors on

which the clock has been disabled will continue to receive an occasional clock interrupt.

This is because it is not possible to completely disable clock interrupts in hardware.

Instead, when a processor’s clock interrupt is disabled, the timer is programmed to a

large value. It continues to generate an interrupt every F0000000 (Hex) ticks. The dura-

Configuring For Real-Time Operation

REACT In IRIX V.5 Technical Report 19

tion of this period varies with the speed of the processor being used, and can be calcu-

lated by multiplying F0000000 (Hex) times the clock period of the processor. The

overhead of processing these occasional interrupts is minimized by the clock interrupt

handler. Upon being entered, the interrupt handler will determine that clock interrupts

are disabled, and return immediately. Handling an interrupt in this way requires the pro-

cessor to execute in kernel mode for approximately 20 microseconds.

When in use, the REACT/pro frame scheduler periodically resets the clock interrupt

timer and thus prevents a clock interrupt from ever occuring.

3.5.3 Deadline Scheduling

IRIX with REACT includes a deadline scheduling mode which guarantees that a pro-

cess will be given an opportunity to execute for a specific amount of time within a spe-

cific, recurring period. This capability is useful for applications such as data acquisition,

which require a fixed amount of processing on successive frames of data. Media servers

which must source frames of data at fixed intervals also require this capability.

Deadline scheduling is enabled using the system call schedctl(2), which permits the user

to set the length of the recurring period, as well as the run time to be allocated to the

process in each period. The process is guaranteed to receive its allotment during the

period, though exactly when is not specified.

3.5.3.1 Frame Scheduler

REACT/pro, available as a layered software product for IRIX 5.3 and subsequent

releases, includes a frame scheduler that is useful in real-time simulation applications.

The frame scheduler is a kernel module that cyclically schedules processes at intervals

defined by a regularly-occurring interrupt. When enabled on a processor, the frame

scheduler replaces all other IRIX scheduling policies on that processor. Frame schedul-

ers can be enabled on all but one processor in a multiprocessor system; i.e. all but the

system processor. Each frame scheduler manages execution of processes only on its

own processor, but multiple frame schedulers can be synchronized to enable frames on

separate processors in a system to be synchronized.

The frame scheduler uses an incoming interrupt to partition time into a sequence of

minor frames. The interrupt source can be the internal timer (see Section 4.1), an exter-

nal interrupt (see Section 4.3), an interrupt from one of the VME buses, the vertical

retrace interrupt in an Onyx graphics system, or an interrupt sent from another user pro-

cess. A user-defined number of minor frames comprise a larger recurring periodic time

slice, called a major frame. This arrangement is shown in Figure 4.

Each minor frame is associated with a queue of processes to be executed within that

interval of time. The list of processes in the queue is maintained in priority order. At the

beginning of each minor frame, control is passed to the first process in the queue. The

remaining processes in the queue are executed when the previous process yields the

CPU. Processes are typically enqueued as part of the set-up of the frame scheduler, but

they also can be added or deleted from a queue dynamically after the frame scheduler

has been started.

The minor / major frame construct enables multiple, related frame rates to be created in

the following way. Specify a timer interrupt to start minor frames at the highest desired

Configuring For Real-Time Operation

20 REACT In IRIX V.5 Technical Report

rate, and specify the number of minor frames per major frame equal to the ratio of the

lowest and highest desired rates. Enqueue processes to be run at the highest rate in every

minor frame, and enqueue processes to be run at the lowest rate in only one minor frame

per major frame. Enqueue processes to be run at the middle rate in every other minor

frame, and so on.

Figure 4: Asynchronous I/O operation

Each enqueued process is assigned a discipline, which specifies the process’ preemption

behavior within the queue. Nominally, a process that has not been found ready to run

throughout the duration of a minor frame will generate an underrun error, and a process

that has not yielded the CPU by the end of its minor frame will generate an overrun

error. Errors result in a signal being sent to the group of processes participating in the

frame scheduler setup. These errors can be masked by specifying the real-time under-

runnable or real-time overrunable discipline, respectively, for the process when it is

created. A process that is overrunable can also be assigned the continue discipline,

which specifies that if the process that has not yielded the CPU by the end of the minor

frame, it will be continued from that point in a later minor frame (on which it is queued).

One or more processes per queue can be assigned the background discipline. These pro-

cesses must be enqueued last in the queues. Background processes run only when there

are spare cycles, and do not generate overrun or underrun errors.

Processes controlled by the frame scheduler can perform operations that result in their

execution being suspended, such as awaiting completion of an I/O operation or avail-

ability of a system resource. When a process suspends, the frame scheduler will start

execution of the next highest priority process. As soon as the event occurs on which the

higher process is waiting, the frame scheduler will suspend execution of the lower prior-

ity process and resume execution of the higher priority process.

Major FrameMajor Frame

Minor-0 Minor-1 Minor-2 Minor-0 Minor-1 Minor-2

TIME

Q0 Q1 Q3

Real-time Event Interrupts

Process Queues

Configuring For Real-Time Operation

REACT In IRIX V.5 Technical Report 21

A frame scheduler is created by a user-mode program using the frs_create(3) call. This

call specifies the CPU that will run the frame scheduler process group, isolates this CPU

(see Section 3.4), specifies the number of minor frames that will form a major frame,

and specifies the interrupt source that will drive the scheduler.

The process issuing the frs_create call becomes the master process for this frame sched-

uler. The master process creates all the other processes that are members of the frame

scheduler process group, using fork(2) or sproc(2). The master process assigns each pro-

cess to a minor frame, using frs_enqueue(3). (The master process is not queued, since it

must run asynchronously in order to respond to signals.) A single process may be

enqueued on several queues simultaneously; that is, the same process may execute on

multiple minor frames within the same major frame. After a process is enqueued, it con-

nects itself to the frame scheduler using the function frs_join(3).

After all processes have been enqueued, the master process signals the frame scheduler

to start activating processes, using frs_start(3). If all enqueued processes have been con-

nected to the frame scheduler using frs_join(3), the scheduler enables the event inter-

rupt, waits for its next occurrence, and starts scheduling the member processes in real-

time.

The master process or any process in the frame scheduler process group may initiate the

termination of a frame scheduler using frs_destroy(3). This call disconnects all pro-

cesses from the frame scheduler and un-isolates the CPU. After disconnection, pro-

cesses continue execution in normal mode and may not issue any frame scheduler calls.

Each frame scheduler executes on an isolated processor. Multiple frame schedulers exe-

cuting on different CPUs can be synchronized, such that one frame scheduler is defined

to be a synchronization master and the other frame schedulers are synchronization

slaves. In all cases, frame schedulers executing on different processors will be synchro-

nized if they are using the same interrupt source. For the case of the internal timer inter-

rupt, synchronization is maintained as a result of hardware synchronization of all timers

in the system. For other interrupt sources, synchronization is maintained using the inter-

rupt multi-cast feature of the POWERpath-2 system bus. When the selected interrupt

occurs, it is multicast simultaneously to all processors.

Other Real-Time Programming Features

22 REACT In IRIX V.5 Technical Report

4.0 Other Real-Time Programming Features

This section discusses additional features included in IRIX with REACT that are often

useful to real-time users.

4.1 Timers

IRIX with REACT includes support for Berkeley interval timers (itimers). These timers

generate an interrupt at the end of the specified interval. Hardware support for itimers

included in the system enables short intervals to be timed with high accuracy and no

increase in system overhead.

IRIX with REACT also supports event timers, which are useful for measuring the real

time between two points in the user’s code. Three types of event timer facilities are pro-

vided in IRIX with REACT: UNIX System V timers, BSD4.2 timers, and direct access

to hardware timers from user code.

4.1.1 Interval Timers

BSD4.2 UNIX introduced the itimer facility. An itimer allows the user to specify both

an offset from the current time (the delay) and the recurrence time (the interval). The

timer will wait until the delay has passed, then begin timing the interval. At the end of

the interval, it will fire, interrupting the processor that set up the itimer. The kernel’s

itimer interrupt handler delivers a signal to the process that set it up. As described

below, three types of itimers are provided, each of which delivers a different signal to

the process. Each user process can utilize up to one itimer of each type.

The first type is the real-time itimer, which delivers the signal SIGALRM. This timer

measures wall clock time. It can time intervals from 400 µs to 200 hours with resolution

of greater than 1 µs, subject to the restrictions on the fasthz parameter that are described

in the following section. The accuracy of the hardware that underlies the itimers is one

hundred parts per million. (NOTE: The timer resolution specified in this paragraph

assumes IRIX Version 5.2 or later.)

The second itimer type is a process-virtual-time timer, which delivers the signal

SIGVTALRM. It runs only when the process is running in user mode.

The third itimer type is the system-virtual-time timer, which delivers the signal SIG-

PROF. It runs both when the process is in user mode and when the kernel is operating

on behalf of the user. During all system calls and I/O driver execution, the kernel is

operating on behalf of a user process. Time spent executing interrupt handlers is not

counted as part of system virtual time, since it is not always possible to determine to

which process the time should be assigned.

The resolution of the process-virtual-time and system-virtual-time itimers is 10 ms.

Timers other than itimers (such as stimer or utimer) do not measure real-time, and

should not be used for real-time applications.

4.1.2 Event Timers

Event timers are typically used to measure the elapsed time between events. By getting

the time before and after an operation and then subtracting, the application can calculate

Other Real-Time Programming Features

REACT In IRIX V.5 Technical Report 23

elapsed time. For timing events, IRIX with REACT supports direct user code access to a

free-running hardware timer, and two syntaxes of UNIX system calls. The free-running

hardware timer provides the highest resolution and accuracy, and is recommended for

use in real-time applications.

Each processor has a free-running timer which consists of a 52-bit counter clocked con-

tinuously by the POWERpath-2 bus clock. The SGI_QUERY_CYCLECNTR command

of syssgi(2) returns the address of the counter and the period of its clock signal. (In the

current generation of multiprocessor systems, the clock period is 21 nS, though this

hardware dependency should not be programmed into applications.) After querying for

the counter’s address, a user process can use mmap(2) to map the counter into its virtual

address space. The process can subsequently read the hardware counter directly, without

the overhead of a system call. The time required to read this counter is approximately

100 nS. All timers in a system are synchronized in hardware; i.e. all timers start at zero

on the same clock tick and so always contain the same value.

In IRIX V.5, there are two options for reading the timers, depending upon the require-

ments of the application. The first option is to read the counter as a 64-bit integer. How-

ever, the underlying assembler code will perform two 32-bit loads. This gives rise to the

possibility of a carry occuring between the two 32-bit loads. (A carry will occur every

90.2 seconds.) To fully account for this possibility, the user must perform three 32-bit

reads: the high order section, followed by the low order section, followed by the high

order section. If the two reads of the high order section are not equal, then a carry

occurred.

In IRIX V.6, the 52-bit timer can be read as a 64-bit integer.

The gettimeofday(3B) call provides a system call interface to the timer described above.

The system initializes a time base on power-up using the battery backed up time-of-day

clock and associates a counter value with that time. Subsequent gettimeofday(3B) calls

will return the original time base plus the difference between the current counter value

and the original power-up counter value. The resolution of this counter is determined by

the system parameter fasthz (see the following section for an explanation of fasthz).

Note that if the timed(1M) daemon is enabled, it may modify the gettimeofday(3B)

timer, resulting in erroneous event timing.

Process execution time accounting information is traditionally measured under UNIX

System V using the times(2) system call. Berkeley added the getrusage(3) system call.

The times(2) and getrusage(3B) return reports of accumulated real, user, and system

times. Under IRIX V.5, the kernel time-stamps each process state transitions between

user and kernel mode using the free-running timer and accumulates the elapsed time

between state transitions.

Shutting off the system clock using the sysmp(2) command MP_NONPREEMPTIVE

does not affect the gathering of process state transition data.

4.1.3 Details Of Timer Resolution

Each processor in a multiprocessor system includes two hardware clock interrupt sig-

nals.

Other Real-Time Programming Features

24 REACT In IRIX V.5 Technical Report

The first clock signal, called the CPU scheduler clock, has a fixed period of 10 ms, and

is used for scheduling and statistics gathering. The system clock is not accessible to the

user.

The second clock signal, referred to as the “fast clock”, has a variable frequency set by

the system parameter fasthz. The fast clock is distributed to all processors, and is used as

the basis of the real-time timers. It is also used for event timer system calls such as get-

timeofday(3B).

The allowable frequency range for fasthz is from 500 Hz to 2500 Hz (10 ms to 400 µs

period). The resolution of the real-time itimer is determined by the fasthz period. When

setitimer(2) is called, it divides the fasthz period into the requested itimer interval to

determine how many clock ticks in duration the interval should be. This results in an

interval with a precision of one fasthz period.

By choosing an appropriate value of fasthz, it is possible to time any interval within the

range of 400 µs to 200 hours (accurate to the level of the underlying crystal oscillator

which generates the clock signal). An appropriate value of fasthz is one whose period is

an even divisor of the desired interval. For example, if an interval of 5 ms is desired,

2000 Hz (whose period is 500 µs) is an appropriate value.

The default value of fasthz is 1000 Hz (1 ms). It can be modified using the systune(1M)

utility.

In the current generation of hardware, the frequency of the hardware clock signal that is

used to generate fasthz is 47 MHz (21 ns period). (Always use the SGI_QUERY_CY-

CLECNTR command of syssgi(2) to read the frequency in any application program that

uses it.) The accuracy of the crystal oscillator that sources this signal is 100 parts per

million. This translates to a maximum timing error of 100 microseconds per second.

While a timer may drift this much relative to an external time source, the skew among

timers for different processors in the same system will be less than one clock tick, since

all timers are clocked by the same hardware clock signal.

4.2 Asynchronous Disk I/O

Typically when a user process makes a system call to perform disk I/O, the kernel ini-

tiates the I/O operation, and the user process is blocked until the I/O operation com-

pletes. To meet the needs of real-time applications, IRIX with REACT supports

asynchronous I/O. When an asynchronous I/O system call is made, the kernel initiates

the I/O request on behalf of the user process and returns control to the user process.The

user process can either wait for the I/O operation to complete, or it can continue execut-

ing until receipt of a signal. This sequence of events is shown in Figure 5.

Other Real-Time Programming Features

REACT In IRIX V.5 Technical Report 25

.

Figure 5: Asynchronous I/O operation

The asynchronous I/O interface is implemented using four child processes created by

sproc(2) that perform the actual I/O operations, and a control block in memory (aiocb)

containing user- and system-defined status and control information for the transaction,

such as the file pointer, the number of bytes, and the priority of the request.

The child processes can be created by the aio_init system call, or by the call that ini-

tiates the first asynchronous I/O transaction. For real-time application, it is preferable to

create the child processes using the system call aio_init, which allows the calling pro-

cess to assign execution of the child processes to another processor. (This is because

child processes created using sproc inherit their parent’s processor assignment, so that

child processes created in a real-time process’ address space will run on that real-time

processor.) The aio_init(3) call should be made prior to isolating the real-time proces-

sor. It is available in IRIX 5.2 and later versions.

The asynchronous I/O interface is initialized when a process issues its first asynchro-

nous I/O read (aio_read), asynchronous I/O write (aio_write), or multiple asynchronous

I/O reads/writes (lio_listio) request. Initialization includes creating the child processes

(if they have not already been created by aio_init) and enqueueing the aiocb for the sub-

sequent I/O transactions. The child processes busy wait on a semaphore that is incre-

mented each time an I/O request is made. When the semaphore is non-zero, one of the

child processes wakes up and handles the first aio request from the linked list of aio con-

trol blocks.

By default, aio requests are queued in the order of the priority of the processes initiating

the requests. The user can optionally reduce the priority of a particular request by speci-

aio_init

aio_read

aio_suspend

real-time processing i/o processing

start child processes

Handle Signal

User Process

Receive Info

Other Real-Time Programming Features

26 REACT In IRIX V.5 Technical Report

fying a value other than 0 in the aio_reqprio field of the aiocb. This value will be added

to the process priority to determine the request’s order in the queue.

The lio_listio(3) allows multiple I/O requests to be made in a single function call. The

user process can simultaneously enqueue a number of aio requests to a device and

optionally receive a queued signal when the request completes. The operation to be per-

formed (read or write) is specified in the aio_lio_opcode field of each iocb.

The user process can choose to synchronously wait a specified amount of time for aio

completion, using the aio_suspend(3) call. This gives a program the capability of queu-

ing a number of aio requests, and then waiting until at least one of them has completed,

or the program is interrupted by a signal, or the timeout specified in the call expires.

When aio_suspend is used with aio_error(3) and aio_return(3), the user process incurs

the least amount of overhead using asynchronous I/O: upon return from aio_suspend,

the functions aio_error and aio_return can be applied to the individual aiocb for com-

pletion status.

Alternatively, the user process can continue executing after the aio request has been

queued, and be notified of I/O completion by a signal. The signal type is specified either

in the aio_sigevent.sevt_signo field of the aiocb, or as the sig.sevt_signo argument to

lio_listio. Because of the overhead of asynchronous signal delivery, this method is most

appropriate when the number of outstanding asynchronous I/O requests is small, or

when the process cannot afford to block because it has other time-sensitive tasks to

complete.

The aio_error and aio_return calls can be used to determine the error status and return

status, respectively, of an aio operation while it is proceeding.

Pending aio requests can be cancelled using aio_cancel(3). In compliance with the

POSIX standard, any requested signal will be delivered to the process that initiated the

request.

4.3 External Interrupts

CHALLENGE and Onyx systems provide six I/O lines (two inputs and four outputs)

designed to be connected to external equipment. The interface to these lines is provided

by the special device file /dev/ei (see ei(7)). This interface allows separate machines to

send and receive interrupts over a dedicated wire for purposes of inter-machine synchro-

nization.

The eternal interrupt device driver maintains per-process state information, allowing

any number of processes to open this device and use it without interfering with each

other. In order to distribute the overhead associated with the ioctl calls, a user-process

can specify which CPU executes the device driver system calls (EIIOCSETSYSCPU)

and which CPU executes the interrupt handlers (EIIOCSETINTRCPU).

The device driver maintains queues of incoming interrupts for each process that has the

device file open. There are two interrupt queues for each process: one for use by the sig-

nal handler and the other for use by the busy wait function, as explained below. The

Other Real-Time Programming Features

REACT In IRIX V.5 Technical Report 27

interrupt queues allow software to determine how many interrupts have arrived but have

not yet been retrieved by the process. The queue can be flushed by the user program.

A user process can enable or disable interrupts using the EIIOCENABLE and EIIO-

CDISABLE commands. Interrupts are automatically disabled when the device is closed

by the last process. A process can assert (EIIOCSETHI) or de-assert (EIIOCSETLO) an

interrupt on any of the four output pins and generate an outgoing interrupt pulse

(EIIOCSTROBE).

Incoming interrupts can be handled in a number of ways. Using the EIIOCSETSIG

command, a process can instruct the driver to send a signal when each interrupt arrives.

The interrupt queue permits the signal handler to know exactly how many interrupts

have arrived, even if a signal was discarded. Or a user process may request to block in

an ioctl() until an interrupt is received. Finally, in situations where the overhead of a

system call is unacceptable (for example, when interrupts occur frequently), a process

can busy wait for an interrupt to arrive, using the eicbusywait library function. The

interrupt queue maintained for this function insures that an interrupt arriving before the

library call is made will still be available to the calling process.

A process can specify the value in microseconds of the outgoing pulse width (EIIOCSE-

TOPW), the expected incoming pulse width (EIIOCSETIPW), and the threshold beyond

which an incoming pulse is considered to be “stuck” (EIIOCSETSPW).

The outgoing pulse width determines how long the output lines are asserted when the

driver generates an outgoing interrupt using EIIOCSTROBE. This value should not be

set too high, because the processor busy waits with all interrupts blocked during this

time. On the other hand, too short a pulse may not be reliably received by the remote

machine. The default is 5µs and should not normally be changed.

The expected incoming pulse width determines how long the interrupt handler will wait

before returning. The interrupt handler must not return while the input line is still

asserted; otherwise, multiple interrupts are received from the same input pulse, indicat-

ing to the driver that the line is “stuck”. The value of the expected incoming pulse width

should match the outgoing pulse width of the machine producing the pulse. The default

is 5µs.

The “stuck” pulse width defines the minimum allowable time between distinct input

pulses: any two pulses that arrive within this time are considered to be the same pulse.

Setting this value too low will cause a single pulse to be processed as more than one

interrupt; on the other hand, setting this value too high will limit the maximum rate at

which interrupts can be received. The default value is 500 microseconds.

4.4 Signals

A signal is a synchronous or asynchronous notification of an event that is sent to a pro-

cess when the event associated with that signal occurs. Examples of such events include

hardware exceptions, timer expiration, terminal activity, as well as calls to kill(2), sig-

queue(3), sigsend(2), or raise(3c). In some cases, a single event generates signals for

multiple processes. A process may request a detailed notification of the source of the

signal and the reason why it was generated (see siginfo(5)).

Other Real-Time Programming Features

28 REACT In IRIX V.5 Technical Report

IRIX with REACT supports the signal functions in BSD4.3 and System V, as well as the

POSIX P1003.1b-1993 real-time signals extension. The basic differences between these

signal interfaces are summarized in Table 1. Because only the POSIX convention pro-

vides reliable and deterministic signal notification, the remaining discussion in this sec-

tion will be confined to just those signals.

IRIX with REACT supports signal numbers between 0 and 64. The signals between 0

and 32 have predefined names (see /var/include/sys/signal.h). The POSIX standard

reserves all signals between 33 (SIGRTMIN) and 64 (SIGRTMAX) for real-time appli-

cations.The signals between 1 and 32 are of equal priority, but have a higher priority

than real-time signals. The real-time signals are prioritized such that the lower the signal

number, the higher the signal’s priority.

Each process may specify a system action to be taken in response to each signal type

sent to it, called the signal’s disposition.The set of system signal actions for a process is

initialized from that of its parent. Once a disposition has been installed for a specific sig-

nal, it usually remains installed until another disposition is explicitly requested by a call

to either sigaction(2), or until the process execs. When a process execs, all signals

whose disposition have been set to catch the signal will be set to the default disposition,

SIG_DFL. Alternatively, a process may request that the system automatically reset the

disposition of a signal to SIG_DFL after it has been caught (see sigaction(2)).

A signal is said to be delivered to a process when the appropriate action for the process

and signal is taken. During the time between the generation of a signal and its delivery,

the signal is said to be pending (see sigpending(2)). A process can determine the signals

that are currently pending using sigpending.When a pending signal is delivered, the sig-

nal will remain pending if there are additional signals queued to that signal number.

Otherwise the pending indication is reset.

Because a signal‘s disposition is determined at the time it is delivered, rather than when

it is caught, a signal‘s disposition can change while it is pending. When multiple

unblocked signals are pending, the highest priority signal will be delivered first. On the

other hand, a lower priority signal cannot preempt a higher priority signal handler.

Each process has a signal mask that defines the set of signals currently blocked from

delivery to it (see sigprocmask(2)). The signal mask for a process is initialized from that

of its parent. A signal that is blocked by a process will not be lost, but will be queued

TABLE 1. Signal Functions Summary

System V BSD4.3 Posix 1003.1 Posix 1003.1b-1993

32 signals 32 signals 32 signals 64 signals

Not reliable Reliable Reliable Reliable

Error if signal occurs

during system call

Restarts system call

on signal

Restarts system call

on signal

Restarts system call

on signal

Signals not queued Signals not queued Signals not queued Signals queued

Other Real-Time Programming Features

REACT In IRIX V.5 Technical Report 29

and left pending, so that if it is later unblocked (sigsuspend(2)) the signal will be deliv-

ered. A process can also block a signal by setting its disposition to SIG_IGN.

If the disposition of a signal is the address of a function, and the signal‘s SA_SIGINFO

flag is set (see sigaction(2)), the handler will be passed a pointer to the siginfo_t struc-

ture, containing the signal’s cause, as well as a pointer to the structure ucontext_t, which

contains the receiving process’ context when the signal was delivered. When the signal

handler returns, the receiving process resumes execution at the point it was interrupted,

unless the signal handler makes other arrangements.

A process can wait for the occurrence of a signal in a number of ways. It can wait for a

number of signals to occur with a specified timeout (sigtimedwait) or without timeout

(sigwaitrt). It can unblock a signal and then wait for that signal in a single atomic oper-

ation (sigsuspend(3)). Or it can simply return the value for a queued signal (sigwait-

info(3)).

VME Bus Capabilities and Use

30 REACT In IRIX V.5 Technical Report

5.0 VME Bus Capabilities and Use

The system VME interface is a high performance implementation which provides full

support for all features of Revision C.2 of the VME Specification plus the A64 and D64

modes as defined in Revision D. The VME interface is designed to allow both direct

access of addresses on the POWERpath-2 bus by devices on the VME bus and direct

access of addresses on the VME bus by devices on the POWERpath-2. Address map-

ping is provided which allows VME devices to perform DMA access to user-process

virtual addresses.

5.1 Configurations

All CHALLENGE and Onyx systems contain a 9U VME bus in their main card cage as

part of the standard I/O complement. Rack configurations may optionally include an

auxiliary 9U VME card cage. This cage may be configured as one, two, or four VME

busses. Table 2 illustrates the number of VME slots available in various CHALLENGE

and Onyx configurations:

Determining whether to split the auxiliary VME cage into multiple busses should be

done by examining the bandwidth required. Each additional VME bus which is config-

ured requires an F cable output from an F-HIO card installed in a POWERchannel-2

board and a Remote VCAM board installed in the auxiliary VME cage.

Up to a total of three VME busses (two in auxiliary cage) may be supported using the

first POWERchannel-2 board in a system; four or more busses requires the addition of a

second POWERchannel-2. Table 3 illustrates the configuration requirements for various

numbers of VME busses.

TABLE 2. CHALLENGE / Onyx VME Slots

Main Cage
VME Slots

Aux Cage
VME Slots
- 1 Bus

Aux Cage
VME slots
- 2 Busses

Aux Cage
VME Slots
- 4 Busses

CHALLENGE L 5 none none none

Onyx Deskside 3 none none none

Challenge XL 5 20 10 / 9 5 / 4 / 4 / 4

Onyx Rack 4 20 10 / 9 5 / 4 / 4 / 4

VME Bus Capabilities and Use

REACT In IRIX V.5 Technical Report 31

Note that F-HIO Short modules, which are intended for use only on POWERchannel-2
#1, have only a single F Cable output, while regular F-HIO modules provide two F Cable
outputs. This explains why a second POWERchannel-2 board is required for 4 or more
VME busses, but the HIO slots on POWERchannel-2 #1 is not used in this configuration.

5.2 Memory Mapping

The system supports mapping of VME addresses into the POWERpath-2 address space

for programmed I/O (PIO) control of VME devices and supports mapping of POWER-

path-2 addresses into the address space of the VME bus for direct memory accesses

(DMA) by devices on the VME bus. The implementation and operation of these two

mappings differ, as described below.

5.2.1 PIO Mapping

PIO mapping is based on opening a 128 megabyte window from the POWERpath-2 bus

address map into the VME address spaces. Each VME bus in the system has its own

window. This window is divided into sixteen 8 Mb segments. The first of these seg-

ments contains VCAM control registers and the A16 VME address space.

The other 15 segments are used to access the VME bus through a 15 entry Map Ram in

the VMECC. Each Map Ram entry contains a six bit Address Modifier and nine high-

order address bits. When a reference is made to one of the segments, these bits are read

from the Map Ram and combined with the offset into the 8 Mb segment to form an A64,

A32, or A24 VME address. One of the VCAM control registers stores the additional 32

high order address bits which are used to form A64 addresses.

PIO Map Ram entries are set up by making a system call. Parameters of the call are the

VME address range to be mapped and the Address Modifier code to use in accessing the

VME bus. The service returns a pointer to the virtual address at which the VME bus will

be accessed. The mapping remains established for the life of the calling process unless

another call is made to close the mapping. See usrvme(7).

5.2.2 DMA Mapping

DMA mapping is based on the use of page tables which are stored in the system main

memory. This scheme allows VME DMA devices to reference a stream of contiguous

virtual addresses which correspond to virtual addresses in the user process’ space.

TABLE 3. POWERchannel-2 (Pc-2) Configurations vs. Number of VME Busses

VME
Busses

Pc-2 #1 Slot
1

Pc-2 #1 Slot
2

Pc-2 #2
Slot 1

Pc-2 #2
Slot 2

1 open open not req. not req.

2 F-HIO Short open not req. not req.

3 (1 Pc-2) F-HIO Short F-HIO Short not req. not req.

3 (2 Pc-2) open open F-HIO open

4 open open F-HIO F-HIO

5 open open F-HIO F-HIO

VME Bus Capabilities and Use

32 REACT In IRIX V.5 Technical Report

These virtual addresses may refer to scattered physical pages in main memory. Thus, the

VME device is able to view the addresses it references in the same way as the user pro-

cess, and DMA transfers which span multiple pages can be performed as a single opera-

tion.

Each DMA stream from the VME bus is assigned a VME Virtual Base address which

corresponds to a pointer into a translation ram on the POWERchannel-2. The contents

of this ram point to the beginning of a page table in main memory. Bits 20:12 of the

VME Virtual Address are used as the offset into the page table. The page table entry is

used to translate the VME Virtual Address into a physical address on the POWERchan-

nel-2.

Each VME I/O adapter on the POWERchannel-2 caches sixteen translations internally.

Whenever a VME device performs a memory reference, the translation cache is

checked. If a hit occurs, the cache entry is used to translate the VME Virtual Address to

a POWERpath-2 bus physical address. If a miss occurs, the POWERchannel-2 hard-

ware automatically fetches a new translation from the page tables in main memory and

loads the new translation into the cache, replacing the least recently used entry. Because

each VME bus has its own translation cache with eight pairs of entries, up to eight

DMA streams can be simultaneously active on a single VME bus without incurring a

loss of performance due to thrashing.

A kernel-resident device driver is required to set up DMA mapping. See IRIX Device

Driver Programming Guide for more information.

5.3 Optimizing Bandwidth and Latency

The system architecture is designed to maximize the total available I/O connectivity and

bandwidth. Most high performance I/O devices operate by performing block-mode

DMA, and this is the mode of operation which yields the best results. For devices which

are not capable of DMA operation, the system provides the option of accessing these

boards via programmed I/O. In addition, the system provides a DMA engine in the

VME interface which can perform DMA with non-DMA VME devices to optimize their

performance.

Table 4 summarizes the performance of the system VME bus using a VME DMA

device to access system memory in various transfer modes. Actual performance may

vary somewhat depending on the timing of the DMA controller used. The system has

enough bandwidth that performance is nearly independent of whether other I/O streams

(from other VME busses or other controllers on the POWERchannel-2) are active at the

same time.

5.3.1 PIO Operations

Some VME devices are only capable of operating in a slave mode. For these boards,

there are two alternative ways to access them: using PIO read operations from a CPU or

using the DMA engine included in the POWERpath-2 architecture. PIO is the most

straightforward method and will generally require little or no rewriting to port applica-

tion software from other systems. However, the bandwidth available through this

method is limited, especially for reads (see Table 5.). This is because PIO operations

cannot be pipelined - the entire path from the POWERchannel-2 to the VME bus and

VME Bus Capabilities and Use

REACT In IRIX V.5 Technical Report 33

the CPU itself remains occupied from the time a PIO read starts to its completion. Each

PIO read operation requires two transfers over the POWERpath-2 bus; one to send the

VME address to be read, and another to retrieve the data. Write operations to the VME

bus are somewhat faster, requiring data to be passed in only one direction. (In contrast,

DMA transfers can be extensively pipelined through the use of data prefetching, which

is performed by the hardware.) Latency for single PIO reads from the VME bus is

approximately 4 microseconds.

If multiple VME busses are in use, PIO bandwidth may be increased by using a different

CPU to perform PIO accesses to each VME bus. Using more than one CPU to do PIO

accesses to devices on the same VME bus will result in little or no increase in overall

bandwidth, due to the fact that the POWERpath-2 bus uses split transactions.

5.3.2 DMA Engine

Because of the modest PIO transfer rates achievable, a DMA engine is included as part

of each VME bus in a POWERpath-2 system. The DMA engine enables efficient block-

mode DMA transfers of data between system memory and VME boards which support

only slave mode (PIO) operations.

Provided that blocks of data of at least 32 contiguous bytes are used, this DMA engine

can transfer data at a higher rate than that achieved using PIO. The DMA engine is capa-

ble of performing D8, D16, D32, D32 Block, and D64 Block data transfers in A16, A24,

and A32 address spaces.

Table 6 illustrates the performance of the DMA engine versus the size of the transfer for

a typical VME slave device using D32 accesses. The performance increases with

increasing block size because the start-up cost of using the DMA engine is amortized

TABLE 4. VME Bus DMA Performance (using DMA board on VME)

READ WRITE Block Size

D8 0.4 Mb / S 0.6 Mb / S n/a

D16 0.8 Mb / S 1.3 Mb / S n/a

D32 1.6 Mb / S 2.6 Mb / S n/a

D32 BLOCK 22 Mb / S 24 Mb / S 256 Byte

D64 BLOCK 55 Mb / S 58 Mb / S 2048 Byte

TABLE 5. VME PIO Bandwidth (CPU accessing Slave on VME Bus)

READ WRITE

D8 0.2 Mb / S 0.75 Mb / S

D16 0.5 Mb / S 1.5 Mb / S

D32 1 Mb / S 3 Mb / S

VME Bus Capabilities and Use

34 REACT In IRIX V.5 Technical Report

over a larger number of bytes. In systems with multiple VME busses, each bus includes

an independent DMA engine, with the result that simultaneous performance on each bus

will be as shown in Table 6. Performance using D64 transfers will be approximately

(though somewhat less than) twice the performance shown in Table 6.

A set of library functions for controlling the DMA engine from a user process is pro-

vided in IRIX with REACT. These allow the user to set up buffers, map the DMA

engine into a process’ virtual address space, and initiate DMA operations. (See

usrdma(7) and udmalib(3)). The initialization routines use system calls, but the actual

transfers are completed in user mode, eliminating the overhead of making a system call.

This keeps very low the overhead involved in using the DMA engine, resulting in a net

performance increase compared with PIOs for transfers of 32 bytes and larger.

5.3.3 Intelligent I/O Controllers

In addition to the techniques described above, it is possible to use a VME CPU board

(non-SGI) to act as an intelligent DMA engine to copy data between a slave VME board

and system memory. This may offer advantages if non-contiguous blocks of data must

be transferred, or if it is desirable to do some preprocessing of the data before writing it

to system memory.

TABLE 6. VME DMA Engine Performance vs. Block Size (MB / sec, D32 transfers)

Size (bytes) READ WRITE BLOCK READ BLOCK WRITE

32 2.8 2.6 2.7 2.7

64 3.8 3.8 4.0 3.9

128 5.0 5.3 5.6 5.8

256 6.0 6.7 6.4 7.3

512 6.4 7.7 7.0 8.0

1024 6.8 8.0 7.5 8.8

2048 7.0 8.4 7.8 9.2

4096 7.1 8.7 7.9 9.4

SCSI Capabilities and Use

REACT In IRIX V.5 Technical Report 35

6.0 SCSI Capabilities and Use

The system includes two SCSI-2 controllers on each POWERchannel-2 board, and has

the capability to add additional controllers on HIO modules in groups of three. Since

these controllers are capable of differential output, SCSI devices can be cabled long dis-

tances from the system cabinet. The SCSI controllers are inexpensive and efficient

DMA devices which make near-optimum use of the POWERpath-2 bus bandwidth.

Using 16-bit SCSI, useful bandwidths of up to 14 megabytes per second may be

achieved on each SCSI channel. Using 8-bit SCSI, approximately 7 megabytes per sec-

ond is available. These bandwidths may be achieved by configuring the system to per-

form DMA directly into the user process’ address space without buffering.

Although SCSI represents a non-traditional approach to controlling real-time external

hardware, some of our real-time customers are finding that it can be used to provide a

more cost-effective interface than VME for controlling remote devices. The ability to

cable it long distances and the high density (up to eight SCSI channels per POWER-

channel-2 Board) of connections make SCSI a particularly attractive option in the sys-

tem.

Summary of REACT System Functions

36 REACT In IRIX V.5 Technical Report

7.0 Summary of REACT System Functions

TABLE 7. REACT System Functions

System Call Name Description

realtime(5) Introduction to IRIX real-time facilities

sproc(2) Creates share group process

ei(7) External interrupt interface specification

ftimer(1) Reports status of high-resolution interval timer

timers(5) Description of BSD4.3 interval timers

systune(1M) Displays or sets system tuning parameters

sleep(2) Suspends process execution for specified time

time(2) Returns time in seconds since 1/1/70

times(2) Returns time since start of process

gettimeofday(2) Returns current time in seconds and microseconds

syssgi(2) Returns system-dependent information

mmap(2) Maps range of I/O addresses to user’s address space

frs_create(3) Creates frame scheduler process group

frs_enqueue(3) Enqueues a process on a minor frame

frs_join(3) Connects an enqueued process to the frame scheduler

frs_start(3) Starts frame scheduler

frs_yield(3) Causes an enqueued process to yield the processor to another process

frs_destroy(3) Terminates a frame scheduler

sigaction(2) Specifies and reports on handling of individual POSIX signals

sigaltstack(2) Sets or gets signal on alternate stack

sigblock(3B) Blocks signals from delivery to process (BSD4.3)

siginfo(5) Returns information about signal generation

signal(2) Interface to (unreliable) System V UNIX signals

signal(3B) Interface to (reliable) BSD4.3 signals

signal(5) Description of POSIX signal mechanism

sigpending(2) Returns set of pending signals (POSIX)

sigprocmask(2) Manipulates signals blocked from delivery to process (POSIX)

sigqueue(3) Queues a signal to process or group of processes

sigsend(2) Sends signal to process or group of processes

sigsuspend(2) Releases blocked signals and waits for interrupt (POSIX)

sigsetops(3) Manipulates and examines POSIX signal dispositions

sigset(2) Manages signal disposition (System V)

sigstack(2) Sets or gets signal stack context

Summary of REACT System Functions

REACT In IRIX V.5 Technical Report 37

sigtimedwait(3) Waits on set of signals with timeout

sigvec(3B) Specifies and reports on disposition of individual BSD4.3 signals

sigwait(3) Blocks process and waits for signal

sigwaitinfo(3) Returns value of queued signal

sigwaitrt(3) Waits for queued signals (IRIX 5.2 only)

mpin(2) Locks specified range of addresses in memory

munpin(2) Unlocks specified range of addresses in memory

plock(2) Locks entire virtual space in memory

punlock(2) Unlocks entire virtual space

aio_read(3) Issues aio read request

aio_write(3) Issues aio write request

aio_cancel(3) Cancels one or more aio requests

aio_error(3) Returns error status of an aio request

aio_init(3) Initializes POSIX asynchronous I/O interface

aio_return(3) Returns error status of an aio request

aio_suspend(3) Suspends calling process until aio request completes

lio_listio(3) Issues multiple aio requests

schedctl(2) Sets non-degrading priorities

pset(1M) Displays and manages processor set information

usinit(3P) Initializes shared arena

usmalloc(3P) Allocates shared memory from shared arena

usnewlock(3P) Allocates and initializes lock from shared arena

usnewsema(3P) Allocates and initializes semaphore from shared arena

poll(2) Waits for completion of multiple file operations

usnewpollsema(3P) Allocates and initializes pollable semaphore

blockproc(2) Blocks a process

runon(1) Locks process to a specified processor

mpasysmp(2)dmin(

1)

Controls and reports processor status

sysmp(2) Sets multiprocessing system parameters

1boot(1M) Implements updates of /var/sysgen/system

udmalib(3X) Library of routines for using the DMA engine

TABLE 7. REACT System Functions

System Call Name Description

